Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(2): 509-520, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38316139

RESUMEN

The COVID-19 endemic remains a global concern. The search for effective antiviral candidates is still needed to reduce disease risk. However, the availability of high biosafety level laboratory facilities for drug screening is limited in number. To address this issue, a screening system that could be utilized at lower biosafety levels remains essential. This study aimed to develop a novel SARS-CoV-2 main protease (Mpro) dimer-based screening system (DBSS) utilizing synthetic biology in Escherichia coli BL21(DE3). We linked the SARS-CoV-2 Mpro with the DNA-binding domain of AraC regulatory protein, which regulates the reporter gene expression. Protein modeling and molecular docking showed that saquinavir could bind to AraC-Mpro both in its monomer and dimer forms. The constructed DBSS assay indicated the screening system could detect saquinavir inhibitory activity at a concentration range of 4-10 µg/mL compared to the untreated control (P ≤ 0.05). The Vero E6 cell assay validated the DBSS result that saquinavir at 4-10 µg/mL exhibited antiviral activity against SARS-CoV-2. Our DBSS could be used for preliminary screening of numerous drug candidates that possess a dimerization inhibitor activity of SARS-CoV-2 Mpro and also minimize the use of a high biosafety level laboratory.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Saquinavir/farmacología , Simulación del Acoplamiento Molecular , Dimerización , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Biología Sintética , Simulación de Dinámica Molecular
2.
PeerJ ; 10: e13132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341058

RESUMEN

Background: Indonesia is one of the Southeast Asian countries with high case numbers of COVID-19 with up to 4.2 million confirmed cases by 29 October 2021. Understanding the genome of SARS-CoV-2 is crucial for delivering public health intervention as certain variants may have different attributes that can potentially affect their transmissibility, as well as the performance of diagnostics, vaccines, and therapeutics. Objectives: We aimed to investigate the dynamics of circulating SARS-CoV-2 variants over a 15-month period in Bogor and its surrounding areas in correlation with the first and second wave of COVID-19 in Indonesia. Methods: Nasopharyngeal and oropharyngeal swab samples collected from suspected patients from Bogor, Jakarta and Tangerang were confirmed for SARS-CoV-2 infection with RT-PCR. RNA samples of those confirmed patients were subjected to whole genome sequencing using the ARTIC Network protocol and sequencer platform from Oxford Nanopore Technologies (ONT). Results: We successfully identified 16 lineages and six clades out of 202 samples (male n = 116, female n = 86). Genome analysis revealed that Indonesian lineage B.1.466.2 dominated during the first wave (n = 48, 23.8%) while Delta variants (AY.23, AY.24, AY.39, AY.42, AY.43 dan AY.79) were dominant during the second wave (n = 53, 26.2%) following the highest number of confirmed cases in Indonesia. In the spike protein gene, S_D614G and S_P681R changes were dominant in both B.1.466.2 and Delta variants, while N439K was only observed in B.1.466.2 (n = 44) and B.1.470 (n = 1). Additionally, the S_T19R, S_E156G, S_F157del, S_R158del, S_L452R, S_T478K, S_D950N and S_V1264L changes were only detected in Delta variants, consistent with those changes being characteristic of Delta variants in general. Conclusions: We demonstrated a shift in SARS-CoV-2 variants from the first wave of COVID-19 to Delta variants in the second wave, during which the number of confirmed cases surpassed those in the first wave of COVID-19 pandemic. Higher proportion of unique mutations detected in Delta variants compared to the first wave variants indicated potential mutational effects on viral transmissibility that correlated with a higher incidence of confirmed cases. Genomic surveillance of circulating variants, especially those with higher transmissibility, should be continuously conducted to rapidly inform decision making and support outbreak preparedness, prevention, and public health response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Femenino , Masculino , SARS-CoV-2/genética , COVID-19/epidemiología , Indonesia/epidemiología , Pandemias
3.
J Biotechnol ; 145(2): 193-8, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19931576

RESUMEN

The aim of this research was to obtain recombinant human interferon alpha 2b (rhIFNalpha2b) from a synthetic open reading frame (ORF) overexpressed in Escherichia coli. For gene assembly, oligonucleotides were designed by Thermodynamically Balanced Inside Out (TBIO) method using the published synthetic codon optimized hIFNalpha2b ORF for high expression in E. coli. The synthetic ORF was assembled by a two-step Polymerase Chain Reaction (PCR) and cloned into a pGEM-T vector. The two-step PCR resulted in a DNA band of 522 base pairs (bp) corresponding to the size of hIFNalpha2b ORF. Fifteen recombinant pGEM-Ts were obtained and the sequencing results showed that the ORFs contained one to ten mutations with an error rate of 8.3 per kilo base. An ORF carrying one mutation was cloned into a pET32b vector and site-directed mutagenesis was performed to correct the mutation. The hIFNalpha2b ORF was overexpressed as a thioredoxin-his-tag fusion protein in E. coli BL21. The rhIFNalpha2b fusion protein was isolated from inclusion bodies (IB), renatured, and purified using Nickel columns, and all steps were monitored by Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). A rhIFNalpha2b fusion protein of 37kDa in size was produced in high expression levels relative to total protein, renatured and purified from IB with a yield of 3.46mg/l without any further optimization. The purified rhIFNalpha2b was confirmed by peptide analysis with nano-LC-MS/MS2 mass spectrometry. Our current research demonstrates for the first time that by using the TBIO method a synthetic ORF encoding hIFNalpha2b gene can be expressed at high levels in E. coli.


Asunto(s)
Clonación Molecular/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Interferón-alfa/genética , Interferón-alfa/metabolismo , Sistemas de Lectura Abierta/genética , Ingeniería de Proteínas/métodos , Humanos , Interferón alfa-2 , Proteínas Recombinantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...